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Abstract— The present work is investigating the aero-

elastic instability of a viscoelastic plates under 

compressive forces. The Bubnov-Galerkin method used to 

solve the governing equations. The quasi-steady 

aerodynamic loadings are determined using linear piston 

theory. The nonlinear integro-differential equation of the 

plate is transformed into a set of nonlinear algebraic 

equations through a Galerkin approach. The resulting 

system of the equations is analytically solved. The 

influence of elastic and viscoelastic properties and the 

compressive load characteristicsof the plate material on 

the value of critical parameters are discussed. 

Keywords— Viscoelasticity, nonlinear panel flutter, 
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Nomenclature 

D   = bending rigidity of the panel 

m   =mass unit of the panel 

P   =aerodynamic loading 

xN
  =external compressive load 

R   =relaxation operator 

)( tR
 =relaxation kernel 

t   =time 

h   = thickness of the panel 


  =polytrophic exponent 

0   =air density  

0c
  =speed of sound 

 
  = Euler gamma-function 

 

I. INTRODUCTION 

The application of viscoelastic materials in structural 

elements like plates or shells during last decades is 

rapidly grown. The use of viscoelastic material as 

vibration induced elements and dampers used in 

structures in particular the flying vehicle structure has 

grown. Consequently, the analyses of this type of 

structures have gained momentum during recent years. 

There are many works published which deal with 

different aspects of viscoelastic behavior of composite 

plates [1-4]. Some of them are reviewed below. 

Destabilization effect of the internal friction in a material 

was mentioned first in [5] and later in other works [6-7]. 

The buckling analysis of viscoelastic plates subjected to 

dynamic loading in a nonlinear formulation with weak 

singular relaxation kernel is presented in [8-10]. The 

dynamic stability of fiber-reinforced laminated 

rectangular plates used first-order shear deformation 

theory was carried out in [11]. Viscoelastic body model is 

utilized to describe material damping was discussed in 

[12]. This relates the stability problem for elastic systems 

with that for viscoelastic systems [10, 12]. The Bubnov-

Galerkin method is usually applied for solving the 

problems. It is important to study the instability of 

viscoelastic system with the lateral compressive force 

being taken into account. In the present, work the problem 

of the instabilityis solved for a viscoelastic plate in a 

supersonic gas flow. The influence of viscoelastic 

properties of the plate material, the external and 

aerodynamic damping, the flow speed, and compressive 

load characteristic on the value of critical parameters is 

discussed. 

 

II. THE STATEMENT OF THE PROBLEM 

2.1. A long viscoelastic plate 

This work considersaninfinitely long viscoelastic plate 

with freely supported longer edges exposed to a 

supersonic flow with a constant velocityV (Fig.1).  

 
Fig.1: The plate in a gas flow 
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The plate is subjected to a compressive load in the plane 

of the plate. The load 
)(tq

, which is uniformly 

distributed along the edge, is applied in the neutral plane 

of the plate. Because of thearbitrary local curvature,the 

surface of a plate is deformed. It is assumed that the plate 

deflection W is a function of the single space coordinate 

x  and time t , i.e.
),( txWW 

. This shape of the 

deflection entails occurrences of changes the distribution 

of the aerodynamic forces. The aerodynamic forces are 

subject tothe fluctuations of the viscoelastic plate. These 

fluctuations have a nonsymmetrical form and 

damped,because of the hereditary deformation of the 

material of the plate. These deformations are described by 

relation 

    txRtxE ,*,  
,   (1) 

where  
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Using the linear piston theory, the equation of motion of 

the plate is written in the following form: 
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where
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 is the stiffness of the plate, 

,E
are the elasticity modulus and the Poisson ratio of 

the plate material, h is the plate thickness. The term P

determine the aerodynamic load, defined by the piston 

theory 




















x

W
V

t

W

c
P

0

0

,   (4) 

and xN
is the intensity of forces, acting the neutral 

surface of the plate. 

The solution of the integro-differential equation(IDE) (3) 

must satisfy the boundary conditions: at 0х and lх  , 

and initial conditions at 0t
0,0)0(
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Now by introducingthe dimensionless coordinate l

x

and 

speed 0C

V
M 

, then IDE (3)can berewritten in the 

dimensionless form  
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An approximate solution of equation (3) is sought in the 

form  
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n xntftxW
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,sin, 
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where 
)(tfn  is unknown function of time. To obtain the 

function 
)(tfn the Bubnov-Galerkin method will be used. 

Substituting expression (7) intoEq. (6), multiplying by 

xnsin and integrating with respect to x  on the interval 

],0[ l
, gives as the final expression  
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Now if the solution of IDE (8) is searched in theform of 

expression 

  ,sin tAtf nn 
    

   (9) 

then has been thenext integral identity
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easilyapplied, where 
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From the equation (8) at 2m , onecan obtain the 

expressions 

02  sn Rc 
    (11) 
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The system of the equations(12) can be rewrittenas 
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where 11

,
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


PM
q 

. 

When the determinant of the Eq. (13) is equal to zero, one 

can obtain the reduced velocity of the flow as 

  22 4)1(16)1(
8

3
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where r is compressive load on the plate. Eq. (14) is 

represent relation of the reduced velocity of flow q with 

the frequency  .Let demonstrate this relation in the 

examples investigated below, where r  has different value. 

First,it is assumed 0r , then Eq. (14) can be rewritten 

as following expression 
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 for the 

equations (14) and (15), onecan find 
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In case of the perfect elastic plate, whereparameters are 

0,0  cR
the equations (16) and (17) willbe 

written in the following form, respectively 
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The maximum value of the reduced velocity fq
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If substitute cRR 10 into the equations (19),and (20), 

then can be obtained next expressions 
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New inequality 
110 0  RRc  based onthe 

inequalities (2) and
10  cR

 was introduced. Under 

this inequality the Eq. (21) and (22) are analyzed for 

relaxation kernel
5.00 R

. This analyze 

demonstratesdecreasing of the critical values of the 

reduced velocity for the viscoelastic case 

)(v

fq
twice then 

reduced velocity in the elastic case

)(e

fq
. When we 

substitute relaxation kernel
4.00 R

into Eq. (21) and 

(22) the critical valueof the reduced velocity for the 

viscoelastic case 

)(v

fq
 is decreasing and it is two-and-a-

half time less then

)(e

fq
. Such reduction of the reduced 

velocity 

)(v

fq
is observedonly because of the hereditary- 

deformable properties of the material of the plate, such as 

the viscosity- , the relaxation-


, and the singularity- . 

Consequently, it will affect to the corresponding value of 

the critical speed of flutter-

)(v

fV
.  

The same effect was explored at weak singularity kernels 

of the hereditary the transient process of the panel flutter 

in [10]. The functional dependence of q on 
2 is 

illustrated in Figure 2.  

 
Fig.2: The calculation of reduced velocity 
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Let now investigate the second case, when compressive 

load 0r .  

The equations (11) and (12) wereobtained, when the 

conditions 0cos wt and 0sin wt respectively. The 

analogously to them can be obtained the solution of IDE 

(8) in the form of 
ti

nn eAtf )(
. Here nA

is the 

constant,  is the frequency and 1i .  

Then this will be the complex expressions in the 

following form   
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From the condition of the existence of the nontrivial 

solutions (23a),we can obtain the expressions similar to 

the expressions (14) and (15). 

Thus, both approaches of the solution of IDE (8) give 

identical results. It is significant, when the loads N are 

compressive as can be seen from the equation (21), then it 

leads to a decrease crV
, and when N are the stretching 

forces, then it leads to an increase in the critical speed of 

flutter.  

 

2.2.The rectangular viscoelastic plate 

Next,consider the case of the rectangular plate. This 

problem has the same governing equation and boundary 

conditions as in 2.1.Assuming that the plate is 

compressed along the x  axis by forces N ,and the 

equation (6) can be rewritten inthe following form  
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Assuming, that tWW sin , the equation relative to 
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By using the approximation expression for a deflection 

yxAxAyxW  sin)2sinsin(),( 21 
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   (25) 

one extract Bubnov-Galerkin equation for the rectangular 

platewith 1 . This leads to the equations  
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   (26) 
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The determinant of the system (27) is equal to zero and 

itallows to findreduced velocity  
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The maximum value of
q

, which is consider as criticalis 
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In aperfect elastic case, when 
0,0  cR

 from the 

expression (30) follows that 
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By substituting equation (31) into the expression (30) is 

obtained 
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In the absence of the compressing loads
 0r

it will be 
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In the Figure 3 shown the formation of the loop of static 

equilibrium and straight lines (31) and (32) are the points 

of contact of tangency that correspond to the values q and 

r of the perfect elastic and hereditary- deformed 

rectangular plate.  

 

Fig.3: The calculation of 
q

 for the perfect elastic and 

viscoelastic rectangular plates 

 

 

III. CONCLUSION 

In this work, the effect of compressive load to the stability 

of the elastic and viscoelastic plate in the gas flow has 

been investigated. It has been observed, when shear load 

is indicated factor, it can have influence on the stability of 

the viscoelastic systems. The values of critical parameters 

for the elongated and the rectangular plate are strong 

evidence of no validity of the conclusions given in [11-13] 

concerning hereditary deformable properties of the 

materials. First, because of the integral operator is directly 

depend on the relaxation parameters
 ,

, and  . 

Second, both of the values of the reduced velocities

)()(  and e

f

v

f qq
have not identical representation, and 

essentially differ from each other.The examples with 

relaxation kernels clearly demonstrate reduced velocity 

differences between perfect elastic and viscoelastic cases. 

Thus, when relaxation kernels are
5.00 R

, and 

4.00 R
 were observed reduced velocity difference 

between perfect elastic and viscoelastic plate 2 and 2.5 

times. Hence, the application of the hereditary deformable 

(viscoelastic) plate in the transient and the steady process 

leads to an essential reduction of the critical speed of 

flutter. 
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